Subglottic Stenosis and Cricotracheal Resection/The Toronto General Experience and Approach

Dr Ralph W Gilbert MD, FRCSC Gullane/O'Neil Chair of Otolaryngology/H&N Surgery University Health Network Department of Otolaryngology/Head and neck University of Toronto

Wharton Head and Neck Centre

Presented by the Division of Thoracic Surgery, Department of Surgery, University of Toronto

48th Annual Toronto Thoracic Surgery Refresher Conference June 7 - 8, 2024 | Windsor Arms Hotel, 18 St. Thomas Street

University Health Network

Princess Margaret Hospital

COURAGE LIVES HERE

Purpose of the Presentation

Princess Margaret Hospital

Review of the History of CTR and airway surgery at UHN/TGH

Review the Classification/Etiology and Management of Subglottic Stenosis

Illustrate our current technique for CTR

Review our most recent outcome data

Present some new concepts in complex airway reconstruction

- Airway reconstruction at Toronto General Hospital
 50 year history
 - (Bryce, Pearson,)
 - Along with Grillo popularized

UHN Airway Team

Classification of Subglottic Stenosis

Princess Margaret Hospital

Classification	From	То	Endoscopic appearance
Grade I	No Obstruction	50% Obstruction	
Grade II	51%	70%	
Grade III	71%	99%	
Grade IV	No detectable lumen		

Myer/Cotton Classification

Princess Margaret Hospital

Trauma(Intubation/Other)

Idiopathic iSGS

Auto Immune

Idiopathic SGS-Etiology-Unknown 📿

Princess Margaret Hospital

95% of patients are perimenopausal or menopausal females-Is there a relation to Estrogen or other Hormonal etiology

> Inflammatory condition of subglottis appears to be a role of regulators of inflammation including dysregulation of T cells, evidence that IL-27 and IL 17A upregulated

> > Mediators and Regulation of Inflammation including upregulation of PD-1 and CD4+ Tcells

Autoimmune Disorders

- Granulomatosis with Polyangitis(GPA)
 - Work up with ANCA and other inflammatory markers
 - Clinical History
- Relapsing Polychondritis
 - Clinical History

Initial Management

Princess Margaret Hospital

Clinical Assessment including serology and PFT's

> Hi Res CT imaging including virtual bronchoscopy

> > Bronchoscopy +/-Laryngoscopy

Surgical Management(options)

Dilation(Rigid or Balloon) +/-Intralesional Steroid or Mitomycin-C

Laser + Above

Cricotracheal Resection

What are the reported results?

Princess Margaret Hospital

SYSTEMATIC REVIEW published: 10 January 2020 doi: 10.3389/fsurg.2019.00075

Endoscopic Treatment of Idiopathic Subglottic Stenosis: A Systematic Review

Emilie Lavrysen, Greet Hens, Pierre Delaere and Jeroen Meulemans*

Otorhinolaryngology-Head and Neck Surgery, University Hospital Leuven, Leuven, Belgium

Systematic Review

Princess Margaret Hospital

FIGURE 4 | Distribution of the used techniques for treatment of patients with idiopathic subglottic stenosis in the different selected trials, coded by color. CO₂ laser, carbon dioxide laser; Nd:YAG laser, neodymium-doped yttrium aluminum garnet laser.

Results of the North American Airway Collaborative Princess Ma

Princess Margaret Hospital

Scientific Briefing

Comparative Treatment Outcomes for Idiopathic Subglottic Stenosis: 5-Year Update

Ordaryrgology-Head and Neck Surgery 2023, Vol. 168(6) 1570–1575 © 2023 American Academy of Ordaryrgology-Head and Neck Surgery Foundation. DOI: 10.1002/ohn190 http://otojournal.org WILEY

Department of Otolaryngology-Head and Neck Surgery, University of Colorado School of Medicine, Denver, Colorado, USA -Department of Surgery, Division of Otolaryngology–Head and Neck Surgery, Duke University, Durham, North Carolina, USA Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, USA ⁰Department of Surgery, Division of Otolaryngology–Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Visconsin, USA Department of Otolaryngology–Head and Neck Surgery, University of Virginia, Charlottesville, Virginia, USA ²Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio, USA ³Department of Otolaryngology–Head and Neck Surgery, Baylor University, Houston, Texas, USA ⁴Department of Pulmonology, Mayo Clinic, Rochester, Minnesota, USA ⁵Department of Otolaryngology–Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA ⁶Department of Otolaryngology-Head and Neck Surgery, Harvard University, Boston, Massachusetts, USA ¹⁷Department of Otolaryngology–Head and Neck Surgery, University of Maryland, Baltimore, Maryland, USA ¹⁸Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, USA ¹⁹Department of Otolaryngology–Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA ²⁰Department of Otolaryngology–Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA ²¹Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, California, USA ²²Department of Medicine, Division of Pulmonology, Vanderbilt University Medical Center, Nashville, Tennessee, USA ²³Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Phoenix, Arizona, USA ²⁴Scripps Health, Coastal Pulmonary Associates, Encinitas, California, USA ²⁵Department of Otolaryngology–Head and Neck Surgery, Ohio State University, Columbus, Ohio, USA ²⁶Department of Otolaryngology–Head and Neck Surgery, Louisiana State University, Baton Rouge, Louisiana, USA ²⁷Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, USA ²⁸Department of Otolaryngology–Head and Neck Surgery, Mount Sinai, New York, New York, USA ²⁹Department of Otolaryngology–Head and Neck Surgery, Augusta University Health, Augusta, Georgia, USA ³⁰Department of Otolaryngology-Head and Neck Surgery, Bastian Voice Institute for Voice, Swallowing, and Airway Disorders, Downers Grove, Illinois, USA ³¹Department of Otolaryngology–Head and Neck Surgery, University of California-San Francisco, San Francisco, California, USA ³²Department of Otolaryngology-Head and Neck Surgery, The London Clinic, London, England ³³Department of Otolaryngology-Head and Neck Surgery, Oregon Health Sciences University, Portland, Oregon, USA ³⁴Department of Otolaryngology–Head and Neck Surgery, University of Rochester Medical Center, Rochester, New York, USA ³⁵Department of Otolaryngology–Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina, USA ³⁶Division of Otolaryngology–Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA ³⁷Department of Otolaryngology–Head and Neck Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA ³⁸Department of Otolaryngology–Head and Neck Surgery, Temple University, Philadelphia, Pennsylvania, USA ³⁹Department of Otolaryngology–Head and Neck Surgery, National University Hospital of Iceland, Reykjavik, IcelandUK, ⁴⁰Ear Nose and Throat, University of Sydney, Sydney, Australia ⁴¹Department of Otolaryngology–Head and Neck Surgery, University of California–Irvine, Irvine, California, USA ⁴²Department of Otolaryngology–Head and Neck Surgery, Ark-La-Tex Center for Voice, Airway & Swallowing, Shreveport, Louisiana, USA ⁴³Department of Otolaryngology–Head and Neck Surgery, University of California-San Diego, San Diego, California, USA

Department of Otolaryngology-Head and Neck Surgery, Mercy Health-St. Rita's Ear, Nose and Throat, Lima, Ohio, USA

NoAAC-Tierney-2023

Figure 1. Primary treatment outcome Kaplan-Meyer survival analysis showing the need for and the time to recurrent surgical procedure between treatment modalities. CTR, cricotracheal resection; ED, endoscopic dilation; ERMT, endoscopic resection with adjuvant medical therapy; IQR, interquartile range; iSGS, idiopathic subglottic stenosis.

NoAAC-Tierney-2023

When Consider CTR in iSGS

- Patient Dependent
 - Most patients favour conservative approach initially
 - Individuals with high performance needs –low threshold to move to CTR
 - Time between dilations affects our recommendations on timing

Our Technique

Princess Margaret Hospital

CATEGORIES ✓ ABOUT ✓ BLOG CONTACT SUBSCRIBE Q ≡

HEAD AND NECK

Surgical procedures related to flap harvests for head and neck reconstructions

The Laryngoscope © 2019 The American Laryngological, Rhinological and Otological Society, Inc.

Cricotracheal Resection for Adult Subglottic Stenosis: Factors Predicting Treatment Failure

Ashok R. Jethwa, MD ^(D); Wael Hasan, MBBCh, MCh; Carsten E. Palme, MD; Antti A. Mäkitie, MD, PhD; Osvaldo Espin-Garcia; David P. Goldstein, MD, MSc ^(D); Ralph W. Gilbert, MD; Shaf Keshavjee, MD, MSc; Andrew Pierre, MD, MSc; Patrick J. Gullane, MB

Recent Series

- 1988- 2023 -165 patients
- Review represents a subset of 114 from 1988-2017
- Retrospective

Demographics

Princess Margaret Hospital

CTR 1988-2017			
		83%	
17%			
Male		Female	

Mean Age = 46.3

Etiology/Comorbities

Princess Margaret Hospital

Medical Comorbidity-30%

Previous Tx

Stenosis Length

Grade of Stenosis

Stenosis Location

Resection Length

Duration of T-tube

Princess Margaret Hospital

Average T-Tube Duration=65.1 days/Range 1-451 Current Target for removal 21 days

Outcomes Decannulation

Outcomes		
95%		
_		
_		
_		
_	د%	
DECAI	NNULATION PERMANENT TRACH	

Predictor	OR	P-value
Medical Co-Morbidity	3.2	.039
Prior Open Procedure	3.2	.048
Post Operative Complication	7.9	.002

Univariate analysis: Failure Decannulation

Predictor	OR	P-value
Traumatic Stenosis	10.3	.017
Combined Glottic/Subglottic	10.4	.010
Revision Surgery following CTR	44.1	.001

Conclusions

Princess Margaret Hospital

CTR has predictable results in our institution with a 95% Decannulation Rate

Predictors of Poor Outcomes - Combined Stenoses, Medical Co-Morbidity, Revision Surgery- Patient Selection is Critical

> CTR in our Jurisdiction is best managed by a multidisciplinary Team including Otolaryngology/H&N Surgery, Thoracic Surgery and Airway Expertise in Anesthesia

What about managing failures or unusual problems?

Concept: Vascularized Composite Autografts (VCAG)

- Rigid airway support
 Mucosal lining
 Wrapped with vascularized carrier
- Used in a select patient population (salvage)

Endoscopic Views of VCAG for LTR

Princess Margaret Hospital

Chondrosarcoma

Endoscopic Views of VCAG for LTR

Endoscopic Views of VCAG for LTR

Princess Margaret Hospital

Failed Cricotracheal Resection

Research Design

Princess Margaret Hospital

- Retrospective case series of VCAG for LTR
 Outcomes:
 - Airway patency
 - <u>Decannulation</u> (primary outcome)
 - Pulmonary Function Test (PFT)
 - UCSD Shortness of Breath Questionnaire (SOBQ)

Voice

Voice Handicap Index (VHI)

Swallowing function

M.D. Anderson Dysphagia Inventory (MDADI)

Results: Decannulation

Results: Vocal Function

Princess Margaret Hospital

Widening of Anterior Commissure: "Trading voice quality for breathing"

Results: Vocal Handicap Index

Princess Margaret Hospital

N = 5

Proof of Principle

Princess Margaret Hospital

- Vascularized Composite Autografts
 - Reserved for select subset of patients
 - High decannulation rate
 - Only at experienced centers
 - Microvascular, open airway techniques

Proof of principle: Vascularized carriers along with structural elements (auto- or allografts) may be way forward in complex airway reconstruction

What about new MIS approaches Princess Margaret Hospital

Published in final edited form as: *Otolaryngol Head Neck Surg.* 2022 May ; 166(5): 917–926. doi:10.1177/01945998211028163.

Endoscopic Resection and Mucosal Reconstitution With Epidermal Grafting: A Pilot Study in Idiopathic Subglottic Stenosis

Ruth J. Davis, MD¹, Ioan Lina, MD¹, Kevin Motz, MD¹, Alexander Gelbard, MD², Robert R. Lorenz, MD³, Guri S. Sandhu, MD⁴, Alexander T. Hillel, MD¹

¹Department of Otolaryngology–Head and Neck Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA

²Department of Otolaryngology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA

³Head and Neck Institute, Cleveland Clinic, Cleveland, Ohio, USA

⁴National Center for Airway Reconstruction, Department of Otolaryngology, Charing Cross Hospital, London, UK

Maddern technique

Princess Margaret Hospital

B Surgery-Free Interval

The Future

Princess Margaret Hospital

Airway Stents-Need a Better Option than T-Tubes in every patient

> Patients with combined injuries and Medical Co-Morbidity continue to be a challenge

> > Introduction of more MIS approaches

Improved understanding of pathogenesis of iSGS

What about Airway Transplantation

Princess Margaret Hospital

The first tissue-engineered airway transplantation: 5-year follow-up results

Alessandro Gonfiotti, Massimo O Jaus, Daniel Barale, Silvia Baiguera, Camilla Comin, Federico Lavorini, Giovanni Fontana, Oriol Sibila, Giovanni Rombolà, Philipp Jungebluth, Paolo Macchiarini

De-cellularized Trachea with stem cells Princess Margaret Hospital

- 11 patients reported
- Published and unpublished data more than 50% mortality at 3 months
- Surviving patients are all stented

The trachea: The first tissue-engineered organ?

Pierre R. Delaere, MD, PhD,^a and Dirk Van Raemdonck, MD, PhD^b

Delaerre et al

Delaerre et al

7 cm Silicone tracheal stent

Delaerre et al

Princess Margaret Hospital

3 mo after transplantation

1 yr after withdrawal of immunosuppressive drugs

